
LINEAR ORDERS, DISCRETE, DENSE, AND CONTINUOUS 
 
THEOREM 1:  If <A,<> is a linear order in which every cut determines a jump (= 
discreet and continuous), then either <A,<> is a finite linear order, or <A,<> is 
isomorphic to one of Z, Z+ or Z-.   
 
PROOF: Let a,b ∈ A.  Since every cut in A determines a jump, there is no transition or 
gap between a and b. This means that there are finitely many elements between a and b.  
This means that A is at most countable.   
 
Pick any element a of A.  {b ∈ A: b ≤ a} is finite or countable.   
If {b ∈ A: b ≤ a}is finite, map the minimum onto 1, its direct successor onto 2, etc.  Since 
between any element of A and the minimum there are finitely many elements, every 
element of A comes into the mapping, and the result is a bijection between A and Z+ (if 
A is countable) or a finite initial stretch of Z+ (if A is finite). 
If {b ∈ A: b ≤ a} is countable, look at {b ∈ A: a ≤ b}.  If that is finite, map the maximum 
on -1, its direct predecessor onto -2, etc.  Again, since any element of A is a finite 
predecessor of this maximum, every element of A comes into the mapping.  The result 
will be a bijection between A and Z-. 
If {b ∈ A: b ≤ a} is countable and {b ∈ A: a ≤ b} is also countable, map a onto 0, its 
predecessors onto -1,-2, etc, and its successors onto 1,2,..etc. Again, each element of A is 
a finite predecessor or a finite successor of a, hence it comes in the mapping.  The result 
is a bijection between A and Z.  This exhausts all the possibilities.  ◄ 
 
This means then that Z exhaustively covers the cases of linear orders with only jumps. 
Since this includes all finite linear orders, linear orders without jumps (i.e. dense linear 
orders)  are by necessity infinite.  The following theorem says that the countable case is 
exhaustively covered by Q: 
 
THEOREM 2: CANTOR'S THEOREM 
 Consider the following four substructures of the rational numbers <Q,<> (with  

the order the obvious restriction): 
 <[0,1],<>, <[0,1),<>, <(0,1],<>, <(0,1),<>.  
 Every countable dense linear order is isomorphic to one of these four  

structures. 
 
i.e.:  The countable dense linear orders with end points are isomorphic to [0,1]. 
        The countable dense linear orders without end points are isomorphic to (0,1). 
        The countable dense linear orders with a minimum but no maximum are  
        isomorphic to [0,1). 
        The countable dense linear orders with a maximum but no minimum are 
        isomorphic to (0,1]. 
 
 
 
 



PROOF: 
Let <A,<> and <B,<> be countable dense linear orders without endpoints. 
Let A = a0,a1,...,an,... be an enumeration of A, and B = b0,b1,...,bn,... be an emumeration of 
B.  Since A and B are countable, such enumerations exist. 
 
We define a sequence f0,f1,....fn,... as follows: 
 
1. f0 = {<a0,b0>} 
 
Note that f0 is, trivially, a finite one-one function that preserves the order. 
 
2. If n>0 and n is odd, then fn = fn-1 ∪ {<a,b>} where: 
 2a:  a is the first element in enumeration A such that a ∉ dom(fn-1). 
 
Since dom(fn-1) is finite, and A countable there always is a first element in A not in 
dom(fn-1).     
 
 2b:  2b1: If for every x ∈ dom(fn-1): a < x, then b is the first element in 
enumeration B such that b∉ ran(fn-1) and for every y ∈ ran(fn-1): b < y.   
 
Since ran(fn-1) is finite, and B countable, and since B has no endpoints, there always is a 
first element in B not in ran(fn-1) and before every element in ran(fn-1). 
 
 2b:  2b2: If for every x ∈ dom(fn-1): x < a, then b is the first element in 
enumeration B such that b∉ ran(fn-1) and for every y ∈ ran(fn-1): y < b.   
 
Since ran(fn-1) is finite, and B countable, and since B has no endpoints, there always is a 
first element in B not in ran(fn-1) and after every element in ran(fn-1). 
 
Since A is linear, if a ∉ dom(fn-1) and a is not before every x in dom(fn-1) and not after 
every x in dom(fn-1), then for some x1,x2 ∈ dom(fn-1): x1 < a < x2.  Since dom(fn-1) is finite 
this means that for some x1,x2 ∈ dom(fn-1):  x1 < a < x2  and for no  
x3 ∈ dom(fn-1): x1 < x3 < a and for no x3 ∈ dom(fn -1): a < x3 < x2. 
 
 2b: 2b3: If for some x1,x2 ∈ dom(fn-1):  x1 < a < x2  and for no x3 ∈ dom(fn-1): 
x1 < x3 < a and for no x3 ∈ dom(fn-1): a < x3 < x2, then b is the first element in B such that 
b ∉ ran(fn-1) and fn-1(x1) < b < fn-1(x2). 
 
Since ran(fn-1) is finite, and B countable, and since B is dense, there always is a first 
element in B not in ran(fn-1) and between fn-1(x1) and fn-1(x2). 
 
Note that, by the construction, if fn-1 is a finite one-one function that preserves the order, 
then so is fn.  We add to fn-1  one pair <a,b>, where, by the construction, <a,b> is well 
defined, a ∉ dom(fn-1), b ∉ ran(fn-1).  This means that, by the construction, if  
fn-1 is a function, so is fn; if fn-1 is one-one, so is fn, and if fn-1 preserves the order, so does 
fn. 



 
 
 
3. If n>0 and n is even, then fn = fn-1 ∪ {<a,b>} where: 
 3a:  b is the first element in enumeration B such that b ∉ ran(fn-1). 
 
Since ran(fn-1) is finite, and B countable there always is a first element inB not in ran(fn-1).     
 
 3b:  3b1: If for every y ∈ ran(fn-1): b < y, then a is the first element in enumeration 
A such that a∉ dom(fn-1) and for every x ∈ dom(fn-1): a < x.   
 
Since dom(fn-1) is finite, and A countable, and since A has no endpoints, there always is a 
first element in A not in dom(fn-1) and before every element in dom(fn-1). 
 
 3b:  3b2: If for every y ∈ ran(fn-1): y < b, then a is the first element in enumeration 
A such that a∉ dom(fn-1) and for every x ∈ dom(fn-1): x < a.   
 
Since dom(fn-1) is finite, and A countable, and since A has no endpoints, there always is a 
first element in A not in dom(fn-1) and after every element in dom(fn-1). 
 
Since B is linear, if b ∉ ran(fn-1) and b is not before every y in ran(fn-1) and not after every 
y in ran(fn-1), then for some y1,y2 ∈ ran(fn-1): y1 < b < y2.  Since ran(fn-1) is finite this 
means that for some y1,y2 ∈ ran(fn-1):  y1 < b < y2  and for no y3 ∈ ran(fn-1): 
y1 < y3 < b and for no y3 ∈ ran(fn-1): b < y3 < y2. 
 
 3b: 3b3: If for some y1,y2 ∈ ran(fn-1):  y1 < b < y2  and for no y3 ∈ ran(fn-1): 
y1 < y3 < b and for no y3 ∈ ran(fn-1): b < y3 < y2, then a is the first element in A such that a 
∉ dom(fn-1) and fn-1

-1(y1) < a < fn-1
-1(y2). 

 
Since dom(fn-1) is finite, and A countable, and since A is dense, there always is a first 
element in A not in dom(fn-1) and between fn-1

-1(y1) and fn-1
-1(y2). 

 
Note that, by the construction, if fn-1 is a finite one-one function that preserves the order, 
then so is fn.  We add to fn-1  one pair <a,b>, where, by the construction, <a,b> is well 
defined, a ∉ dom(fn-1), b ∉ ran(fn-1).  This means that, by the construction, if  
fn-1 is a function, so is fn; if fn-1 is one-one, so is fn, and if fn-1 preserves the order, so does 
fn. 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
FACT 1:  For every n: fn is a finite one-one function which preserves the order. 
 
PROOF:  The induction steps are given in the construction. 
 
 
FACT 2:  For every a ∈ A there is an n such that a ∈ dom(fn). 
     For every b ∈ B there is an n such that b ∈ ran(fn). 
 
PROOF:  This follows from the zig-zag construction.   
If a ∈ A and for some k, a ∉ dom(fk), then for some m, a is the m-th element of A not in 
dom(fk).   By the construction, this means that a ∈ dom(fk+2m), either because it is chosen 
as the argument for some b before that, or, if not, because at that stage it is the first 
element in the enumeration A which isn't in the domain of the previous function.   
The very same argument applies to any b ∈ B. 
 
 
Now we define: 
 
 f = ∪{fn: n ≥ 0} 
 
FACT 3: f is an isomorphism between <A,<> and <B,<>. 
 
PROOF: 
-f is, of course, by definition a relation between A and B. 
-Since each fn+1 is a function extending fn, f is a function. 
-By definition, dom(f) = ∪{dom(fn): n ≥ 0}.  By fact 2, this is A. 
Thus f is a function from A into B. 
-By definition, ran(f) = ∪{ran(fn): n ≥ 0}.  By fact 2, this is B. 
Thus f is a function from A onto B. 
-Since each fn is a one-one function, f is a one-one function.  If a1,a2 ∈ dom(f) and 
f(a1)=f(a2), then for some n: a1,a2 ∈ dom(fn), and hence fn(a1)=fn(a2),. But then, since fn is 
one-one, a1=a2. 
Thus f is a bijection between A and B. 
-Since each fn preserves the order, f preserves the order. If a1 < a2, then, since for some n, 
a1,a2 ∈ dom(fn), by construction fn(a1) < fn(a2).  But then f(a1) < f(a2).  ◄ 
 
We have now proved that all countable dense linear orders without endpoints are 
isomorphic, and hence they are indeed isomorphic to (0,1). 
 



Now let, <A,<> be a countable dense linear order with a begin point a.  <A-{0},<> is a 
dense linear order without endpoints, and hence isomorphic to (0,1).  Let f be the 
isomorphism.  Obviously, f ∪ {<a,0>} is an isomorhism between <A,<> and [0,1).   
Similarly, if <A,<> is a countable dense linear order with an endpoint b, we extend the 
isomorphism between A-{b} and (0,1) to an isomorphism between <A,<> and (0,1] by 
adding <b,1>, and in the same way, we get an isomorphism between <A,<> with begin 
point a and end point b and [0,1] by adding <a,0> and <b,1>. 
Since, obviously, these are all the countable dense linear orders the theorem follows. ◄ 
 
We have so far dealt with linear orders with only jumps and with countable linear orders 
without jumps.   
What about linear orders with only gaps, and linear orders with only transitions.  
Concerning the first, it is easy to see that they do not exist.  Namely, let A be any linear 
order and let a ∈ A, but not an endpoint.  Then  
<{b ∈ A: b ≤ a},{b ∈ A: a < b}> determines a jump or a transition.  This means that it 
can't be the case that every cut in A determines a gap. 
 
This means that for linear orders without jumps (i.e. dense linear orders) we can find only 
two possible kinds: with gaps and transitions, or with only transitions. 
The countable cases are cases with gaps and transitions.  Gaps in Q can be shown by 
looking at irrational numbers: let r ∈ R - Q: 
Q = {q ∈ Q: q < r} ∪ {q ∈ Q: r < q}, and <{q ∈ Q: q < r},{q ∈ Q: r < q}> is a cut in Q 
which determines a gap. 
 
It follows that linear orders in which every cut determines a transition can only be non-
countable.  Intuitively we get the set of real numbers R by for every cut in Q that 
determines a gap, filling up the gap with an irrational number.  This turns the gap into a 
transition (because you need to extend either T1 or T2 of the original cut which 
determined a gap with the element added to get a partition).  As it turns out, there is a 
way of doing this, and in fact only one way of doing this. 
 
Let <B,<> be a dense linear order without endpoints, and let A ⊆ B. 
 
 A lies dense in B iff for every b1,b2 ∈ B: there is an a ∈ A: b1 < a < b2. 
 
 
THEOREM 3:  Let <B,<> be a linear order in which every cut determines a  

   transition, and A a countable subset of B which lies dense in B. 
   Then <B,<> is isomorphic to one of the real intervals (0,1), [0,1), 
   (0,1],[0,1]. 

 
PROOF:  we won't prove this here, but the proof is analogous to things we will later 
prove for completions of Boolean algebras.  If you are a linear order in which every cut 
determines a transition and Q lies dense in you, then every transition can be reconstructed 
as the bounds of a cut of rational intervals, and you are merely the result of adding those 
bounds only where they are lacking (when there are gaps).  Such a structure is called a 



completion of the structure <Q,<>.  Since each incomplete structure has (up to 
isomorphism) one and only completion, and the completions of isomorphic incomplete 
structures are isomorphic, the result follows:  The real intervals (0,1), [0,1), (0,1], [0,1] 
are the four completions of the rational intervals (0,1), [0,1), (0,1],[0,1]. 
 
Of course, since R is a linear order in which every cut determines a transition, and R has 
no endpoints and Q lies dense in R, R is isomorphic to the real interval (0,1). 
Not every linear order in which every cut determines a transition is isomorphic to one of 
these four.  There must be a countable subset which is dense in in. 
 
 
 
 


